City and County Pavement Improvement Center (CCPIC)

Pavement Financial and Preservation Some Best Practices Ashraf Rahim

Santa Maria Public Works July 23, 2020

- Sponsored by League of California Cities, County Engineers Association of California, and California State Association of Counties
- Chartered 28 September 2018

www.ucprc.ucdavis.edu/ccpic

City and County Pavement Improvement Center

- Welcome and Introductions
- CCPIC:
 - Mission and Vision, Scope, Organization
 - Certificate Program
 - Planned Certificate Curriculum and New Course Development
- Worklist
- Technical Presentation
- Questions and Answers

CCPIC Mission and Vision

• Mission

- CCPIC works with local governments to increase pavement technical capability through timely, relevant, and practical support, training, outreach and research
- Vision
 - Making local government-managed pavement last longer, cost less, and be more sustainable

CCPIC Organization

University of California Partners

- University of California Pavement Research Center (lead), administered and funded by ITS Davis
- UC Berkeley ITS Tech Transfer, administered and funded by ITS Berkeley
- California State University Partners
 - CSU-Chico, CSU-Long Beach, Cal Poly San Luis Obispo
 - Funding partner: Mineta Transportation Institute, San Jose State University

- Governance:
 - Chartered by League of California Cities, California State Association of Counties, County Engineers Association of California, also provide staff support
 - Governance Board consisting of 6 city and 6 county transportation professionals
- Current Funding
 - Seed funding for CCPIC set up and initial activities from SB1 funding through the ITS at UC Davis and UC Berkeley, and Mineta Transportation Institute at San Jose State University

- Technology Transfer: training
- Technical resources: technical briefs, guidance, sample specifications, tools, and other resources
- Pavement engineering and management certificate program for working professionals: through UC Berkeley ITS Tech Transfer
- Resource center: outreach, questions, pilot study documentation, and forensic investigations
- Research and development: for local government needs that are not covered by state and federal efforts

CCPIC Training: Certificate Program

- Pavement Engineering and Management Certificate Overview
 - For engineers, asset managers, upper-level managers, technicians and construction inspectors

Improvement Center

- 92 hours of training
 - 60 hours in core classes, 32 hours elective
 - Majority of classes to be offered online
- In four categories:
 - Pavement Fundamentals
 - Pavement Management

Pavement Design

Pavement Materials and Construction

Status

- Plan approved by Governance Board
- Initial classes being delivered, including updated TechTransfer classes and newly developed classes

CCPIC Training: Planned Certificate Curriculum

Ē

	Fundamentals H	s Management	Hrs	Materials and Construction	Hrs	Design	Hrs
	CCA-01 Introduction to Pavement 1 Engineering and Management	CCB-01 Life Cycle Cost Analysis	4	CCC-01 Asphalt Concrete Materials and Mix Design	8		
CORE 60 required	CCA-02 Pavement Sustainability 6	CCB-02 Pavement Management Systems and Preservation Strategies	16	CCC-02 Pavement Preservation Materials and Treatments	8		
				Pavement and Hardscape CCC-03 Construction Specifications and Quality Control Management	8		
	Fundamentals, CORE 1	Management, CORE	20	Materials and Construction, CORE	24	Design, CORE	0
		CCB-21 Financing and Cash Flow for Pavement Networks	4	CCC-21 Concrete Materials	8	Asphalt and Concrete Pavement CCD-21 and Rehabilitation Structural Design	16
		CCB-22 Integrated Asset Management	8	CCC-22 In-Place Recycling	8	CCD-22 Design of Integrated Hardscape Assets	8
				CCC-23 Gravel Roads Engineering, Construction, and Management	8		
ELECTIVE 32 required				Asphalt and Concrete Pavement CCC-24 Construction Processes and Scheduling	6		
106 offered				CCC-25 Construction Inspection	16		
				CCC-26 Pavement and Hardscape Construction Inspection	8		
				CCC-27 Asphalt Pavement Maintenance Construction	8		
				TS-10 Work Zone Safety	8		
	Fundamentals, ELECTIVE 0	Management, ELECTIVE	12	Materials and Construction, ELECTIVE	70	Design, ELECTIVE	24
TOTAL	Fundamentals 1	Management	32	Materials and Construction	94	Design	24

CCPIC Training: New Course Development

Code	Title	Instructor(s)	Expected	Format	Duration
CCA-01	Introduction to Pavement Engineering and Management	Harvey	Completed	Online	10 hours
CCA-02	Pavement Sustainability	Harvey	July 22-23, 2020	Online	6 hours
CCB-01	Pavement Life Cycle Cost Analysis	Hicks, Cheng	Completed	Online	4 hours
CCB-02	Pavement Management Systems and Preservation Strategies	Yapp, Signore	Completed Spring 2021	Classroom Online	16 hours TBD
CCC-01	Asphalt Concrete Materials and Mix Design	TBD	Summer 2021	Online	8 hours
CCC-02	Pavement Preservation Materials and Treatments	Hicks, Cheng	Nov. 16-19, 2020	Online	8 hours
CCC-03	Pavement and Hardscape Construction Specifications and Quality Control Management	TBD	Fall 2021	TBD	8 hours
CCC-23	Gravel Roads Engineering, Construction, and Management	Jones	Spring 2021	Online	8 hours

Worklist

- Asphalt Concrete Compaction
 - A two-page guidelines that can be used to supplement, amend or replace the local government agency's specifications for asphalt concrete compaction.
- Tack Coat
 - A two-page guidelines that can be used to supplement, amend or replace the local government agency's specifications for asphalt concrete compaction.
- Pavement Condition Index (PCI) 4-Pager
 - A four-page paper describing how PCI is measured, what it doesn't measure, and how similar or same PCI may have different implications for pavement preservation and pavement rehabilitation strategies.

Worklist

- Superpave Lite
 - Lead the development of specifications in Caltrans and Greenbook format for a Superpave specification for use by local agencies.
- Tech Topics/Pavement Technology Updates
 - Review the publications from 1998 through 2011. Prioritize for editing, updating, and posting on the CCPIC web site.

Worklist

- Local Agency Survey:
 - Working through LoCC/CEAC, conduct a survey of local agencies on the use of Superpave, interest in a Superpave specification, RAP, warm mix, and other subjects. Develop a contact list of each Agency's "go to" person. Results will provide insight and serve as a basis for future CCPIC initiatives.
- Interested in being on the "Go to" list?
- Send an email to Erik Updyke at: eupdyke@ucdavis.edu

CCPIC Website www.ucprc.ucdavis.edu/ccpic

- Pavement
 training
- Best practices technical briefs
- Tools
- Unpaved roads
- Peer-to-peer

How to get involved?

- Get training
- Get your organization to take training
- Host in-person training classes
- Read the tech briefs and see if your agency can make improvements
 - See the draft specification language
 - We can support you
- Get involved with governance board
- Start a peer-to-peer chat group
- Take a look at the tools on the website

Benkeley

How to figure out most cost-effective strategies: use PMS data and life cycle cost analysis

- Understanding performance of your pavements is key to good pavement management and life cycle cost analysis (LCCA)
 - Performance estimates are typically in terms of Pavement Condition Index (PCI)
 - Agencies need to go one step behind PCI to understand performance, can do this themselves

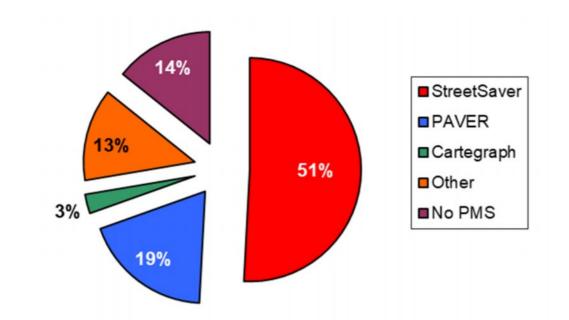
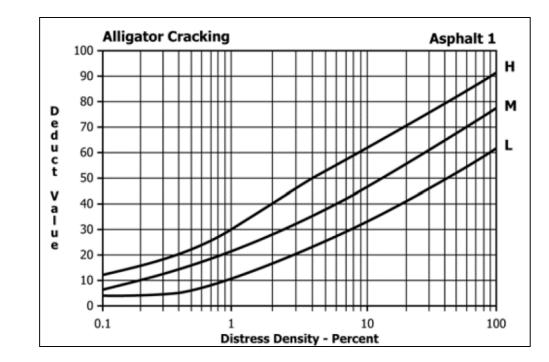


Figure B.4 PMS Software Used By Cities And Counties


Local Streets and Roads 2018

Pavement management: Use of PCI vs measured cracking

- PCI is amalgamation of different distresses
- Can have same PCI for very different conditions
- Engineering meaning in the condition survey is lost
- Recommend
 - Use PCI as communication tool for management/public
 - Manage asphalt pavement considering:
 - Cracking: age and traffic caused
 - Other distresses (rutting, raveling)
- CCPIC working on Tech Brief regarding

Same PCI, different pavement condition

CASE 1: TRAFFIC LOADING RELATED, PCI = 34								
DISTRESS	SEVERITY	QUANTITY	DV					
Alligator Cracks	High	1x6	18					
Alligator Cracks	Medium	1x4 1x5 1x7	17					
Potholes	Medium	3	48					
Potholes	Low	3	30					
Rutting	Low	2x5 2x8	10					
CASE 2: AGE, CONSTRUCTION, UTILITIES, OTHER FACTORS, PCI = 32								
Long/Trans Crack	High	15 20 8 6 12 18	43					
Long/Trans Crack	Medium	25 18 13 9 10	20					
Patching/Utility	High	25x4 25x2	40					
Patching/Utility	Medium	12x6 4x7	20					
Block Cracks	High	4x6 6x5	13					

Variables in the PCI for asphalt pavement

- Fatigue cracking and potholes caused by <u>heavy</u> <u>loads</u>:
 - Alligator cracking
 - Potholes
- Cracking caused by <u>aging</u>:
 - Block cracking
 - Joint reflections
 - Longitudinal and transverse cracking

- Other distresses
 - Low ride quality
 - Bleeding
 - Bumps and sags
 - Corrugations
 - Depressions
 - Edge cracking
 - Lane/shoulder drop-off
 - Patching and utility cut patching
 - Polished aggregate
 - Rutting
 - Shoving
 - Slippage cracking
 - Swelling

City an Pavem

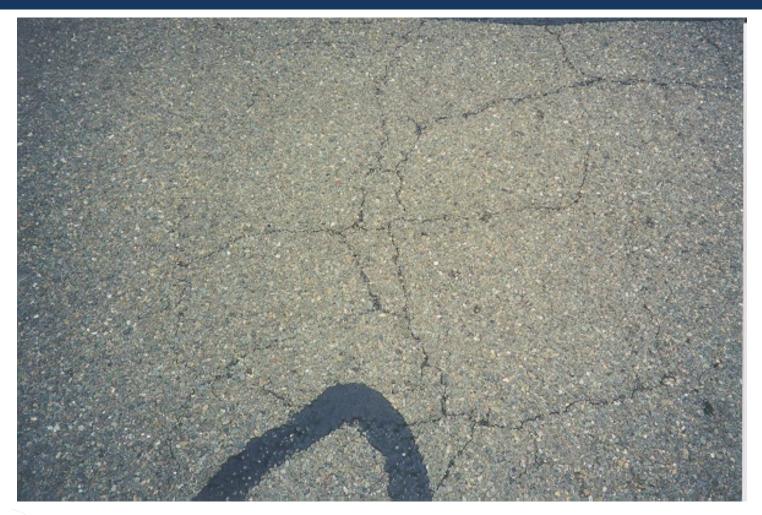
- Weathering and raveling

Bottom Up Fatigue Cracking

- Interaction of asphalt concrete layer, support of underlying structure, materials selection, construction compaction
- Traffic loading
 - Only the truck loads count, cars are too light
 - slower speeds = longer durations = bigger strains
- Environment
 - temperature
 - water sensitivity
 - aging

Initial Wheelpath Cracking (transverse or longitudinal)

 Distress descriptions can be seen in FHWA Distress Identification Manual



City and County Pavement Improvement Center

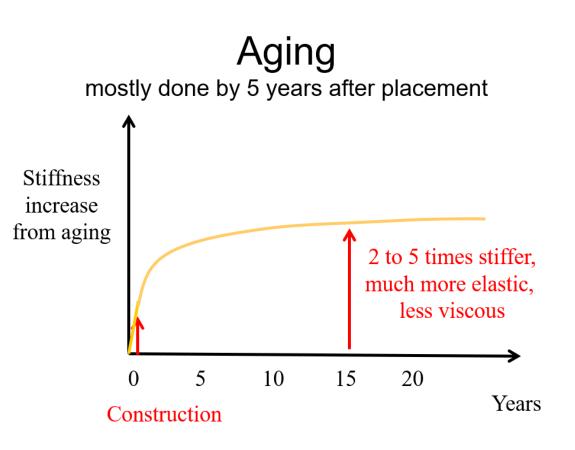
Cracks connect: Alligator Cracking

Benkeley

Fatigue Cracking in Wheelpaths

City and County Pavement Improvement Center

Treatment for load related fatigue cracking


- Fatigue cracking becomes alligator cracking, and eventually forms potholes
- Surface treatments will slow a little, but mostly helps with block cracking, not fatigue
- Will need to do periodic mill and fill with digouts of localized deep cracking
- Mill and fill may not be cost-effective once alligator cracking is extensive
 - Consider partial-depth or full-depth reclamation (FDR) cold in-place recycling depending on crack depth
- Do not let wheelpath cracking become
 Bextensive or must reconstruct

Extensive and likely deep alligator cracking, Starting to form potholes

Aging of the Asphalt

- Aging of the asphalt
 - Caused by oxidation, volatilization
 - Faster if high permeability and temperature
 - Permeability greatly reduced with better asphalt compaction
- Effects
 - Stiffening of mix with time
 - Won't relax stresses from thermal contraction as well

Block Cracking

- Typically caused by long-term aging of asphalt concrete and daily temperature cycling (expansion/contraction)
- May also be reflection cracking from shrinkage cracks in cement treated base
- Poor asphalt construction compaction allows air to enter and age the asphalt faster, accelerates aging

Good compaction limits entry of air and slows oxidation

Block Cracking

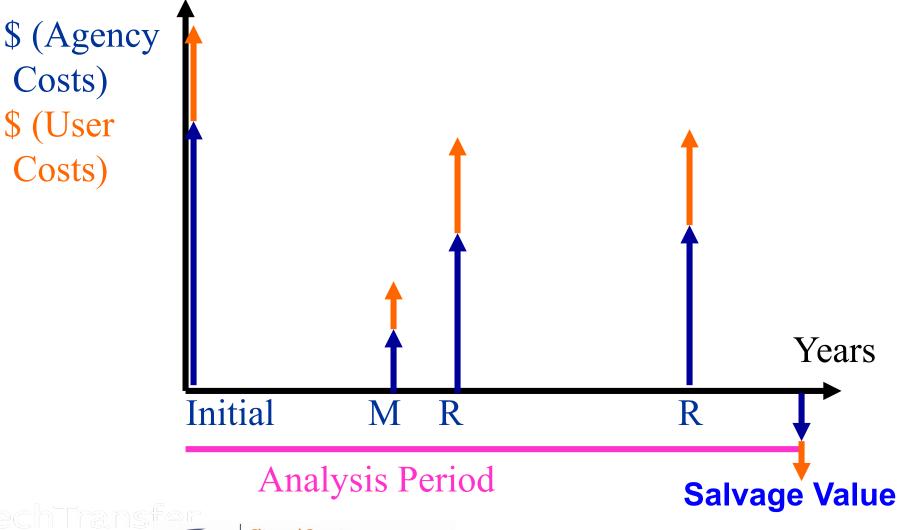
Benkeley

City and County Pavement Improvement Center

Treatment for age-related cracking

- Keep the surface protected from aging
- Can potentially use fog seals, slurries or microsurfacings
 - Use appropriate treatment for HMA or RHMA
- What frequency?
 - After aging has progressed
 - About 7 to 12 years
 - Before cracking starts
 - Do not let cracking get extensive
 - Doing more frequently than
 needed can be a waste

Life Cycle Cost Analysis


Net present value = add up the costs over the analysis period, including discount rate

Costs)

\$ (User

Costs)

Equivalent • **Uniform Annual** Cost, spread NPV over time, with discount

City and County Pavement Improvement Center

Effect of asphalt construction compaction on axle loads to cracking

- Use a quantitative (QC/QA) specification to measure compaction
- Write spec in terms of *in-place bulk density* and *theoretical maximum density* (TMD)
- Use cores or nuclear gauges calibrated for the specific mix/project to provide daily feedback to contractor and agency
- Apply payment reductions if they don't meet your specification, <u>and enforce</u> those payment reductions
- Future change to the Greenbook, Change No. 301SM, will incorporate CCPIC recommendations for asphalt compaction

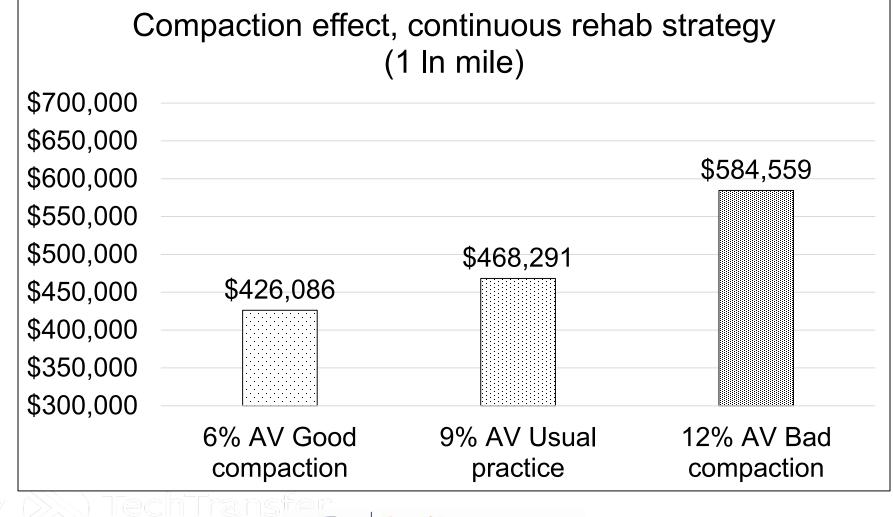
General rule:

1% increase in constructed air-voids = 10% reduction in fatigue life

ounty Improvement Center

But what about?

- Won't this increase the bid cost for my asphalt?
- Isn't the cost of managing this specification high?
- Won't coring damage my new pavement?



City and County Pavement Improvement Center

Life cycle cost analysis results effects of asphalt compaction

naveren et caurena y

Main Takeaways

- Ability to make good engineering decisions regarding timing and type of treatment based only on PCI is limited; use the cracking data
- Life cycle cost analysis (LCCA) practical tool to determine most cost-effective strategies
 - Needs good performance estimates, agencies can use their own information
 - Focus on cracking, separated by:
 - Streets with heavy trucks/buses, wheelpath fatigue cracking and age related cracking, need rehabilitation eventually
 - Streets with no heavy vehicles, age related cracking only, can use only preservation treatments if timely
- Good asphalt compaction specification is most cost-effective change
 - 92% relative to theoretical maximum density not laboratory maximum density
 - Must be effectively enforced to work
- There are other things that can be done: see CCPIC training

CCPIC LCCA Excel tool

- Excel tool to calculate Net Present Value, Salvage Value and Equivalent Uniform Annual Cost
- Can compare 3 scenarios side by side
- Can choose and edit the list and sequence of treatments

Tools

Pavement Software Tools

- Life Cycle Cost Analysis Comparison Spreadsheet (<u>Download</u>)
- Unpaved Road Chemical Treatment Selection <u>Website</u>
- Asphalt Paving Compaction Temperature (<u>Download & Install</u>)

More

More

Workshops

Download at: <u>http://www.ucprc.ucdavis.edu/ccpic/</u> or Google "CCPIC UCPRC"

Pavement Improvement Center

www.ucprc.ucdavis.edu/ccpic

